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Abstract

The nonlinear vibration analysis of a directly excited cantilever beam modeled as an inextensible viscoelastic

Euler–Bernoulli beam has been studied by the authors and is reported in the literature. The viscoelastic damping was

modeled as Kelvin–Voigt damping, and the nonlinearities arisen from the inextensibility assumption. This paper extends

our theoretical developments presented in the previous papers and utilizes the method of multiple scales in order to arrive

at the modulation equations and the closed-form frequency response function. The analytically derived frequency response

is experimentally verified through harmonic force excitation of samples of carbon nanotube-reinforced beams. The beam

used in experiment consists of two elastic layers of high-carbon steel sandwiched together through a viscoelastic layer of

carbon nanotube–epoxy mixture. The results demonstrate that increasing the excitation amplitude or decreasing damping

ratio can cause a minor decrease in the nonlinear resonance frequency despite the significant increase in the amplitude of

vibration due to reduced damping.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The nonlinear vibrations of directly excited viscoelastic beam have been studied analytically [1,2]. The beam
was assumed to be inextensible and followed a classical linear viscoelastic behavior, i.e., Kelvin–Voigt model.
There are other studies on dynamical modeling of viscoelastic beams, where analytical models for sandwiched
beams have been proposed and investigated by several researchers ([3,4] are just a few examples). The
Kelvin–Voigt model is utilized here as the viscoelastic model of the beam. This model has been used to study
the vibration damping of nonlinear viscoelastic systems [5] and analysis of nonlinear oscillations of simply
supported viscoelastic rectangular plates [6]. Knowing the geometry and viscoelastic model of the system, the
equations of motion are obtained considering the direct forced bending vibrations of the system.

In Ref. [1], an Euler–Bernoulli beam model for a long and thin viscoelastic beam structure was assumed.
A geometrical approach was utilized to study the bending vibrations of such viscoelastic system. The beam
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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was considered to be inextensible and only planar vibration was considered. Such a model has been
used by several researchers [7–14]. The planar and nonplanar nonlinear vibrations of elastic beams have
been studied earlier [15,16]. In these systems, the geometry of the system causes the presence of nonlinear
terms in inertia, damping and stiffness. In nonlinear vibrations of elastic beams, mainly nonlinearities of
inertia and stiffness exist while damping nonlinearity is negligible [17,18]. Other nonlinearities are produced
due to presence of friction and structural damping [19]. These two nonlinear terms are nonlinearities in
damping.

Although there are many numerical methods such as finite element methods [20] to analyze the nonlinear
vibration of flexible beams, an analytical method, i.e., method of multiple scales, is utilized in Ref. [1] to derive
a closed-form solution for the nonlinear frequency equations. This method has been used for the analysis of
nonlinear vibrations of damped and undamped systems, and nonlinear nonplanar oscillations of elastic
cantilever beams excited by a combination of parametric resonance in which the effect of geometric and
inertial nonlinearities in the governing equations of motion and boundary conditions are considered [19,21].
Analytical study conducted here concludes a relationship for the modulation equations and frequency
response function, and hence, amplitude-dependent nonlinear frequencies can result. The closed-form
solution helps better understand the dependence of the system to its physical and geometrical parameters
and can be used for control of the system [22]. In addition, the proposed method has already been used
to derive the closed-form solution of nonlinear vibration problems with nonlinear terms of damping and
stiffness [23].

In this paper, using the equations of motion of the planar bending vibration of an inextensible viscoelastic
carbon nanotubes-reinforced cantilever beam, the stability of the system is analytically studied and
experimentally verified. The motivation behind utilization of carbon nanotubes-reinforced beam in this study
originates from their interesting properties including damping enhancement [24,25]. Carbon nanotubes have
also other astounding properties such as very high elastic modulus and high electric current capacity when
compared with other conductive materials [24–26]. The rest of the paper is organized as follows. In the
immediately following section, the modeling assumptions and frequency response analysis using the method of
multiple scales are presented. Experimental setup and results are provided in Sections 3 and 4, and finally
Section 5 concludes the research and provides future works.

2. Nonlinear frequency response

In the derivation of the equations of motions and stability analysis of the nonlinear vibration of the
viscoelastic beam considered here, the boundary conditions are considered to be clamped–free (see Fig. 1). The
beam is assumed to be inextensible and a classical linear viscoelastic model, i.e. Kelvin–Voigt model is
considered. It is assumed that the beam follows the Euler–Bernoulli beam theory, where shear deformation
and rotary inertia terms are negligible. The beam is also assumed to possess uniform cross-sectional area.
The non-dimensional form of equations of motion and boundary conditions of the beam, shown in Fig. 1,
Fig. 1. Schematic of the cantilever beam.
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can be obtained as [1,2]
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where v is the bending vibration, Z the strain-rate damping coefficient (which appears due to Kelvin–Voigt
model), O the excitation frequency, and e the perturbation parameter (in order to use the method of multiple
scales [27,28]). The beam bending vibration, v, can be expanded by order of e as

vðx; t; �Þ ¼ v0ðx;T0;T1Þ þ �v1ðx;T0;T1Þ þ � � � , (3)

where T0 and T1 are the time scales. T1 ¼ �t is a slow time scale, demonstrating shift in the natural frequencies
because of the nonlinearity, while T0 ¼ t acts as a fast time scale, characterizing motions occurring at the
natural frequencies, ok.

Substituting expression (3) into the partial differential equations of system (1) and boundary conditions (2)
and separating terms at orders of e, yields
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v1 ¼ v01 ¼ 0 at x ¼ 0 and v001 ¼ v0001 ¼ 0 at x ¼ 1. (7)

The Galerkin approximation can now be used to represent v(x,t) as a series of products of spatial functions
of only x and time-dependent functions as

vðx; tÞ ¼
X1
n¼1

vnðx; tÞ ¼
X1
n¼1

pnðxÞqnðtÞ, (8)

where pn are the eigenfunctions of a linear uniform cantilever beam and qn are the generalized time-dependent
coordinates. The solution of linear equation (4) with the boundary conditions (5) can be given as
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where ak and bk can be found by applying the solvability conditions to the problem as discussed later in this
section. The solvability condition demands that the eigenfunctions be orthogonal, i.e.
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Z 1

0
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and dnm is the Kronecker delta. For the case of primary resonance,

O ¼ okð1þ �sÞ, (11)

where s is the detuning parameter. Substituting Eqs. (9) and (11) into (6), and applying the condition of
Eq. (10), the secular terms which should be equal to zero become
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Separating the real and imaginary parts of Eq. (12) in the form of
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defining g as a new phase parameter

gk ¼ oksT1 � bk (19)

and substituting Eq. (19) into (17) and (18), the modulation equations can be obtained as
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Using modulation equations, the frequency response of the system reduces to
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Solving the frequency response function (22) for s results in
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Using the modeling efforts developed here, the vibration of the viscoelastic beam can be numerically
illustrated. Considering the beam in Fig. 1 with the physical properties listed in Table 1, the frequency
response of the system due to a direct excitation of the first mode may be obtained as shown in Fig. 2.

In the following section, the frequency response function developed here is experimentally verified.
A comparison study will follow to verify the modeling assumptions taken here.

3. Experimental setup and methods

The experimental investigation of the nonlinear vibrations of the beam system is presented here when
considering its first mode. This section provides the process of fabricating the beam followed by the
experimental setup and results as discussed next.



ARTICLE IN PRESS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

v
(1
,t
)

σ

Fig. 2. Frequency response curve for damping ratio Z ¼ 0.063 and force f ¼ 0.08N.

Table 1

Physical properties of the viscoelastic cantilever beam

Symbol Property Value

EI Beam rigidity 0.453Pam4

l Beam length 140mm

wb Beam width 12.5mm

h1 Viscoelastic layer thickness 1.25mm

h2 Steel layer thickness (each) 0.86mm
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3.1. Fabrication of the viscoelastic beam

The viscoelastic beam considered here consists of three layers, as shown in Fig. 3. The two outer elastic
layers are high-carbon steel with elastic modulus of 190GPa. In order to make the viscoelastic layer, 1 g of
epoxy resin and 1 g of epoxy hardener are mixed, and depending on the sample, 0%, 2.5% or 5% (percentages
are by weight) multiwalled carbon nanotube (MWCNT) is added and mixed with the resin. The carbon
nanotube is added on one side of both steel layers and then sandwiched to form a viscoelastic layer between
the two steel layers. The viscoelastic beam is then cured at room temperature for about 5 h under a load of
20N. Following this, the samples were cured at 60 1C for about 24 h under no load. Finally, the beam was
brought to room temperature and the extra resin coming out of the edges was trimmed and the beams were
cleaned [25]. As reported in Ref. [25], the equivalent damping ratio Z for the samples were found to be Z ¼ 0.08
for 2.5% MWCNT and Z ¼ 0.063 for 5% MWCNT.

3.2. Experimental setup

The beam fabricated in the previous subsection is now subjected to a harmonic force excitation over the
length of the beam. In order to experimentally simulate this condition, one end of the beam is mounted to an
inertial actuator via an impedance head. The impedance head is used to simultaneously provide base
acceleration and excitation force measurements. A laser sensor is also utilized to measure the vibrations of the
tip of the beam. The setup is shown in Fig. 4.

As explained earlier, a layer of MWCNT mixed with epoxy is sandwiched between two high-carbon
steel layers with the thickness of 0.86mm each. A closer picture of the beam is depicted in Fig. 5. The beam
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Fig. 3. (a) A schematic of a MWCNT-reinforced beam, (b) different beam layers and (c) scanning electron microscopy (SEM) image of the

multiwalled MWCNT–epoxy composite.

Laser head

SA-5 actuator Cantilever beam

Impedance head

Fig. 4. Experimental setup for the beam with base excitation.
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length is 140mm with its width of about 12.5mm. There are three samples with different viscoelastic
layers, namely; a plain epoxy layer, 2.5% MWCNT mixed with epoxy, and finally 5% MWCNT mixed
with epoxy.

To excite the viscoelastic beam, an electromagnetic inertial actuator (SA-5) is used, as shown in Fig. 4. On
top of the shaker, a PCB model 288D01 impedance head sensor connects the shaker to the structure where
beam is clamped in. The impedance head provides measurements for both the base acceleration and excitation
force. The vibration of the tip is measured and monitored by a DynaVision LDS laser distance sensor. All
signals are sent and processed via a dSPACEs CP1104 board, which is utilized by ControlDesks and Matlab
Simulinks software packages.
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High-Carbon Steel

Epoxy-MWNT

Fig. 5. Arrangement of the MWCNT-reinforced viscoelastic beam clamped to an inertial actuator.
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3.3. Test method and configurations

Three beams with different viscoelastic layers (plain epoxy, 2.5% MWCNT mixed with epoxy and 5%
MWCNT mixed with epoxy) are utilized for the tests. For each beam, four experimental runs are performed.
In the first three runs, the beam is excited with a harmonic force with constant amplitude and
excitation frequency near the first mode of the beam. A frequency sweep is performed and the amplitude
is measured near natural frequency. In the second and third runs, the amplitude of excitation changes to
another constant value and again the frequency is swept. In the fourth run, the beam is excited in its first
vibrational mode and then the excitation is removed and the vibration is measured in order to study the
damping effects.

In the first three runs, the frequency is swept from �20% of the first natural frequency to 20% over it, and
the vibration amplitude is measured and recorded. The frequency sweep has been done in both directions of
low to high and high to low frequencies. Through extensive runs, it is found that the first vibration mode for
the plain (0% MWCNT) epoxy is about 22Hz, 2.5% MWCNT–epoxy is about 33.5Hz, and 5%
MWCNT–epoxy is about 37Hz. In the second run, the amplitude of excitation is decreased to 0.6 (and 0.3 for
the third run) of the amplitude of the first run (with its amplitude being 1) and the same process of the first run
was performed. In the forth run, the beams were excited at their first natural frequencies with amplitude of
0.15 of the first run, the excitation is then removed and vibration amplitude is measured. The sampling
frequency rate is 0.5Hz. In each step after shifting to new excitation frequency, it is waited enough for the
response to become steady and then the amplitude is measured.

The actual position of the laser is about 2–4mm above the tip of the beam. However, it is considered
that the laser position is the tip in numerical calculations. This means if the beam length is considered
to be x ¼ 1.0, then the position of the laser is at x ¼ 0.97. A more closer observation on Fig. 3b, it is seen that
the tip of the beam is rounded so the mass per length at the tip is less than the rest of the beam. These two
conditions bring small errors in calculations of natural frequency. However, by numerically studying these
conditions and their error effects on the analysis, it appears that they compensate and the combined error is
negligible.

4. Results and discussions

The equations of motion of the carbon nanotube-reinforced beam have been derived, and using the method
of multiple scales a closed-form solution has been presented. Considering the properties of the beams used in
the experiment (see Table 1), the frequency response function of the beams has been plotted using the
mathematical model derived in Section 2. These results can now be experimentally verified. The frequency
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Fig. 6. First mode frequency response curve for 5% MWCNT–epoxy beam with damping ratio Z ¼ 0.063 and force f ¼ 0.08N; (–)

numerical simulations and (�) experimental results.
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Fig. 7. First mode frequency response curve for 2.5% MWCNT–epoxy beam with damping ratio Z ¼ 0.08 and force f ¼ 0.08N; (–)

numerical simulations and (+) experimental results.
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response curve for 5% MWCNT–epoxy beam can be compared as plotted in Fig. 6. Considering the primary
resonance condition, if s ¼ 0, then the excitation frequency equals to linear natural frequency O ¼ o1.
The resonance does not occur exactly in the linear natural frequency since the system is nonlinear with a
nonlinear natural frequency [19].

Similarly, the comparison results between experiment and theoretical modeling for 2.5% MWCNT–epoxy
beam are shown in Fig. 7. In all these results (Figs. 6 and 7), when the frequency approaches near a specific
frequency (here near 20Hz), the frequency responses change significantly due to change in sensitivity of the
shaker. The inertial actuator used here has a natural frequency around 20Hz, so the frequency response close
to 20Hz cannot be accurately obtained. The jump phenomenon is observed here in the results since the
damping is strong enough and the amplitude of vibration is not too large (considering the damping) to cause
the jump.

Fig. 8 shows that the increase in amplitude of excitation force causes not only the increase of the amplitude
of vibration, and particularly the amplitude of resonance vibration, but also a small shift of resonance to a
lower frequency. When the excitation is kept constant and the damping ratio varies as shown in Fig. 9,
the amplitude of the vibration at resonance increases as the damping factor decreases. In addition, a small
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shift of resonance to a lower frequency appears as the value of the damping ratio reduces. The experimental
data presented in Fig. 9 are for 2.5% MWCNT (i.e., Z ¼ 0.063) and 5% MWCNT (i.e., Z ¼ 0.08) to
avoid undue complication in the figure. In order to provide the evaluation of the frequency response
as a function of damping, the numerical results are provided for all the three samples including plain epoxy
beam.

5. Conclusions

The equations of motion of planar nonlinear vibrations of an inextensible viscoelastic cantilever beam have
been utilized to study the frequency response function of the system. The viscoelastic material follows a
classical linear viscoelastic model, i.e., Kelvin–Voigt assumption. Using the method of multiple scales, the
frequency response function and the phase-amplitude modulation equations of the system due to a direct
harmonic excitation were derived for the case of primary resonance. In addition, three different sample beams
were fabricated including two carbon nanotube-reinforced beams. The experimental results matched the
theoretical formulations very closely. The results demonstrated that increasing the amplitude of excitation or
decreasing the damping can cause a minor decrease in the nonlinear frequency of the resonance despite of an
increase in amplitude of vibration due to reduced damping.
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